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t SUMMARY

A capability for the nonlinear vibration analysis of beam and frame
|structures suitable for use with NASTRAN Level 15.5 is described. The
monlinearity considered is due to the presence of axial loads induced by
ilongitudinal end restraints and lateral displacements that are large com-
'pared to the beam height. This paper includes a brief discussion of the
mathematical analysis and the geometrical stiffness matrix for a prismatic
'beam (BAR) element. Also included are a brief discussion of the equivalent
‘linearization iterative process used to determine the nonlinear frequency,
the required modifications to guybroutines DBAR and XMPLBD of the NASTRAN code,
and the appropriate DMAP ALTERS to determine the frequency. To demonstrate
‘this nonlinear vibration capability, four example problems are presented.
Comparisons with existing experimental and analytical results show that
excellent accuracy is achieved with NASTRAN in all cases.

INTRODUCTION

In practical beam vibration problems, transverse deflections may be
‘greater than those assumed for linear theory. Considerable attention has
been given, therefore, to the nonlinear flexural vibration of beams. Most
studies have dealt with simple uniform beams with either hinged or fixed
support conditions at both ends. An excellent literature survey is given
by Eisley (ref. 1) through 1964. More recent surveys are given by Ray and
Bert (ref. 2), and Pandalai (ref. 3). Nonlinear vibrational behavior of
non-uniform beam and frame structures found in many engineering applications,
however, has not received much attention in the literature because of
analytical difficulties. The use of the finite-element method overcomes
these difficulties and removes the uniform beam and limited support condition
restrictions.
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The purpose of this paper is to describe a nonlinear vibrational analysis
capability for determining fundamental frequency of beam and frame structures
suitable for use with NASTRAN Level 15.5 and to present results demonstrating
this capability. The paper includes a discussion of the mathematical analysis
and the derivation of the geometrical stiffness matrix that represents the
induced axial force in the governing equation, the appropriate modifications
to the NASTRAN code, and solutions of example problems. Procedures for non-
linear vibration analysis with and without applied axial forces are available
for NASTRAN Level 15.5 by means of DMAP ALTERS and modifications of the
NASTRAN code civen in the Appendices.

SYMBOLS
A area |
c amplitude of vibration ‘
. . |
d amplitude ratio, c/\[E7K' |
E modulus of elasticity
{f} element forces ‘
h height of beam
I area moment of inertia of cross section
[kl stiffness matrix
[kd] differential stiffness matrix
[kg] geometrical stiffness matrix
% length
[m] mass matrix
Pxo applied axial force on undeformed beam
PX axial force due to deflection
PE Euler load
[p] inplane force matrix
{u} nodal displacements
t time




" X,Y,2 element coordinate system

w lateral deflection
f P mass density

{9} normal mode

W _ fundamental linear frequency

w fundamental nonlinear frequency

Subscripts:

a,aa system
e,ee element
eq equivalent

MATHEMATICAL ANALYSIS

Formulation of Matrix Equation of Motion

The strain energy in a deformed bar element of uniform cross section is
given by:

2
L /a2 \2 2 2 P 2
_EI 3w 1 (9w X 1( ow
U= _2._/(; (——2) dx + chz/é 5 (T)x) dx + —-—2‘/(; 5 (_ax) dx ¢B)

ox
2 2
_ EA 1 [ ow
where PX = —2./(; 5 <_8x) dx (2)

The first two terms of the strain energy expression are due to bending and

applied axial force, respectively. The last term is the nonlinear contribution

of the axial force PX induced by large deflections. If the axial force P_ is
neglected from Eq. (1), the strain energy is reduced to that of the
linear theory.

The kinetic energy is given by:

2 2
_ PA ow 3
T_zfo(at) ax )
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where the rotatory inertia term has been neglected.

In the finite-element approach, transverse deflection of an element is
expressed in terms of generalized displacements {u } and interpolation

functions. The function chosen to represent the transverse deflection is
given by:
we=la-38+2%) -a-2%+%)x @F-2%)
(x - §2) X j {u } (4)
e
where x = % (5)

This displacement function is the same as used for the NASTRAN bar element.
The displacement vector describing bending of a bar element in the xz plane
(see figure 1) is defined by:

T
{ue} = {uza eya uzb eyb} (6)

Substituting Eq. (4) into Egqs. (1) and (3), gives:

U= %-{ue}T ([kee] + [kdee] + [kgee]) {ue} (7)
and
T = % {ae}T [m 1 {a_} (8)

d g .
where [kee], [k ee], [k ee]’ and [mee] represent the element stiffness,
differential stiffness, geometrical stiffness, and mass matrices, respectively

and [kgee] is a function of {ue}. Substituting Eq, (4) into Eq. (2) yields
po= (u ) I ] {u)} (9)
X e ee e

where [pee] is the inplane force matrix.
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‘ Substituting Egs. (7) and (8) into Lagrange's equations, that is,

| d (9T ) ( U ) .

! — (== I+~ |=0 i=1,2, ..,n (10)
! dt (3qi qu

where n is the number of elemental degrees of freedom, leads to the matrix

equation of motion for the large amplitude free oscillations of a bar element
which is given by

m ] fu} + (Tky ) + 191+ 18 Dl } = {£} (11)

The mass, stiffness, and differential stiffness matrices of the bar element
are 12 x 12 matrices relating the forces and moments acting at the ends of the
bar (see ref. 4). The portion of the differential stiffness matrix, for
example, that describes bending in the xz plane of figure 1, is given by

u S u 6

za ya zb yb
. -
6 PXO - PXO - 6 PXO - XO
5% 10 5% 10
%
[kd ] = 2% Pxo Pxo - Pxo
ee 15 10 30 (12)
6 PXO Pxo
5% 10
20 P
X0
e 15 -

The relations between [kdee], [kgee], and [pee] can be found from Eqs. (1)
and (2) and they are

d
[k el (13)

rlew

g8 ;-1
[k e 1= 2

e
X0

263



where

T .
p={u}" [p,] fu} (14)
and
(22)
_\2 d
[p, ] = P_ [k ] (15)

Solution Technique

The goemetrical stiffness matrix [kg ] in Eq. (11) is displacement
dependent (see Egqs. (13) and (14)). Therefore, the frequency for
nonlinear vibration also depends on the amplitude of vibration. This
phenomenon is different from the linear case, in which the frequency is
independent of amplitude. In the following the frequency associated with
the linear vibration problem is referred to as the linear frequency, and the
frequency associated with the nonlinear vibration problem is referred to as
the nonlinear frequency. To determine the nonlinear frequency, an iterative
procedure with an equivalent linearization technique is used and is illus-
trated by the simplified flow chart shown in figure 2. The system matrices
indicated in figure 2 are assembled from the element matrices by a standard
finite-element procedure. The basic idea is to replace the displacement depen-
dent geometrical stiffness matrix [kg ] by an equivalent matrix [kg ]eq'
using the mode shape of the linear € vibration problem as the ee first
approximation to the displacement. This reduces the nonlinear system
equation of motion to a linearized equation which can be solved as a standard
eigenvalue problem., The mode obtained by solving this eigenvalue problem
may be used to recompute [kg ]e for the next iteration in the nonlinear
vibration iterative solutionegrocedure. The solution procedure is illustrated
as follows. The first step is to solve the linear vibration problem:

2 - (16)

W, [maa] {¢}o [kaa] {¢}o
where Wy is the fundamental frequency of the linear problem, {d} represents
the corresponding mode shape normalized by its maximum component, and the sub-

script aa represents the system matrices. Solving Eq. (16) provides the first
approximate displacement in the form

fu}, = e {6} (17)
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|
where ¢ is the amplitude of vibration. The equivalent geometrical stiffness
natrix now can be obtained using {ua}l which leads to a linearized eigenvalue

equation of the form

2 - d 8
o* m 1 {¢} = (k1 + [k 1+ [K {6}y (18)

aa]eq
!

Fhere W is the fundamental nonlinear frequency associated with amplitude c,
and {¢}. is the corresponding mode shape. The iterative process can be
repeate% by using

fub, = e {9} (19)

as the second apprcximation, and similarly the i-th iteration approximate
displacement is of the form

| {fu}; =c {9}, (20)

|

|

The iterative process can be continuced until the nonlinear frequency converges
to the desired accuracy or the mode shape {¢}, satisfies some convergence

criterion (e.g., the modified Euclidean norm of ref. 5).
MODIFICATIONS TO THE NASTRAN CODE

[ To compute the geometrical stiffness matrix [kge 1, subroutine DBAR was
‘modified to take advantage of the fact that the diffeérential stiffness matrix
‘and the geometrical stiffness matrix are related as shown in Eq. (13).

Appendix A shows these changes in CDC UPDATE format. The core storage require-
:ment for DBAR was increased by 6478 locations.

To avoid going through the modified section of code each time DBAR was
called, a new parameter, NLVIB, was added to the DMAP calling sequence for
module DSMGl. The contents of NLVIB are passed through blank common from
'DSMG1 to DBAR, The default value for NLVIB, set in block data subroutine
'XMPLBD, is zero (0). When NLVIB = 0, the new code in DBAR will not be
executed. To set NLVIB = 1 and execute the new DBAR code, the following
‘calling sequence for the DSMGl module is used:

DSMG1 CASECC, ,SIL,,PHIG,CSTM,MPT,ECPT,GPCT,
DIT/KGGG/V ,N,DSCOSET/C,N,1 $

The underlined parameter sets NLVIB to 1.
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Once the changes shown in Appendix A were made to DBAR and XMPLBD, they |
were compiled and replaced the old DBAR and XMPLBD in the NASTRAN object
library. Link 1 and Link 13 were relinked and a new executable NASTRAN was
created. Although this procedure was done on a CDC computer, similar proce-
dures will produce similar results on both the IBM and UNIVAC computers. In
order to use this nonlinear vibration capability in NASTRAN, extensive alters’
have to be applied to either Rigid Format 5 and Rigid Format 13, depending
on how the capability is needed. A summary of the applicable analyses, their
governing equations and their appropriate Rigid Formats is given as follows:

ANALYSIS EQUATION RIGID FORMAT !
Normal Modes woz[m] = [k] 3 i
|
Buckling (k] + K[kd] =0 5 i
Normal Modes with 2 d 1
Differential w “[m] = [k + k] 13 |
) o |
Stiffness
Nonlingar Vibration wz[m] - [k + kg] 5 with ALTERS
Analysis
Nonlinear Vibration
Analysis with 2 _ d g .
Differential w [m] = [k + k + k®] 13 with ALTERS
Stiffness

where A 1is an eigenvalue.

The appropriate DMAP alter sequences for both Rigid Formats 5 and 13 are
shown in Appendix B. The alters between the statements

LABEL CONV $
REPT CONV, 1 §

will go through two iterations. If the user desires more iterations, the
integer in the REPT statement must be increased. The only other input re-—
quired to use this capability is the addition of a PARAM card in the Bulk

Data deck. The parameter AMP is used to specify the amplitude of vibration
of the structure.
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! EXAMPLES AND RESULTS

|

’ The nonlinear vibration capability developed for use with NASTRAN has

- been demonstrated by solving two examples of a nonlinear vibration analysis
'and two examples of a nonlinear vibration analysis with differential stiff-

'ness. NASTRAN solutions are compared with previously published results.

Nonlinear Vibration Analysis

|

‘ The first example is the vibration of a uniform beam with various end
' support conditions. Evensen (ref. 6) obtained approximate amplitude-
ffrequency relations for uniform beams with fixed-fixed, hinged~hinged, and
‘fixed—hinged boundary conditions using a perturbation method. Good agree-—
' ment is obtained between the NASTRAN and perturbation solutions as shown in
: Figure 3. For the hinged support case, the two amplitude-frequency curves
| coincide.

I The second example demonstrates the effect of the amplitude of vibration
' on a rectangular frame structure. The frame is 304.8 cm (10.0 ft.) wide,
609.6 cm (20.0 ft.) long, and is made of 1.27 cm (0.5 in.) diameter steel rod.
There are 10 equally spaced cells lengthwise and 4 equally spaced cells along
the width. All four edges of the frame are fixed. A plot of the undeformed
frame is shown in figure 4. Only one-fourth of the frame is used in the
analysis due to symmetry., The linear frequency and nonlinear frequencies for
values of the amplitude c (see Eq. 17) up to 7.62 cm (3 in.) are as follows:

Amplitude, c Frequency, Hertz

of3
B

0 4,638 linear
0.5 5.319
1.0 6.830
1.5 8.565
2.0 10.295
2.5 11.940
3.0 13.478

Nt W N =
WO LN
N UG

The results indicate that the amplitude has an important influence on
the frequency. In this example, a 5,08 cm (2 in.) amplitude at the center °
of the frame increases the fundamental nonlinear frequency to more than twice
the linear one.
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Nonlinear Vibration Analysis with Differential Stiffness

The third example is a hinged rectangular beam subjected to an applied '
axial tensile force of 105.4 N (23.7 1bf). The same problem was solved in
ref., 2 using three different approximate analytical procedures, and results |
from these procedures, as well as experiment results, are given. One procedure
is based on an assumption for the spatial dependence of the displacement
function, one is based on an assumption for the temporal dependence of the '
displacement function, and the third procedure is the Galerkin procedure. The
beam has the following properties:

Length 50.8 cm (20.0 in.) f
Width 1.27 cm ( 0.50 1in.) i
Height 0.081 cm ( 0.032 in.) :
Material Titanium Alloy 6 !
Elastic Modulus 100.6 GPa 3 (14.6 x 10" psi)
Specific Mass 5.15 Mg/m~ ( 0.186 1b./in.3)

1‘

One-half of the beam modeled by six BAR elements was used for the analysis
Three analytical fundamental frequencies and an experimentally measured one fro
ref. 2 and the NASTRAN solution are shown in figure 5, Comparing the results
demonstrates that the NASTRAN results provide the closest comparison with the
experiment.

The fourth example is a beam-column subjected to an applied compressive
force with various support conditions. Based on linear theory, Lurie (ref. 7)
has shown that the relation between the square of the frequency and the axial
load is linear for a beam that has identically shaped vibration and buckling
modes. He also showed that the condition of zero fundamental frequency cor-
responds to buckling., The linear vibration-stability problem studied by Lurie
is actually the limiting case of a more general phenomenon of large amplitude
vibrations under the influence of axial loads. Burgreen (ref. 8) obtained
an exact solution in terms of elliptic functions for a uniform beam hinged at
both ends and also verified his results experimentally. Srinivasan (ref. 9)
used Galerkin's method to study beam-columns with both ends hinged. Table 1
shows good agreement between the NASTRAN solutions and the results given by
Burgreen and Srinivasan, and NASTRAN givesbetter predictions than the one-term
Galerkin method. The load-frequency curves for different amplitude ratios of
vibration, d, for beams with various support conditions are given in figure 6,
where d is the ratio of amplitude to the radius of gyration of the beam. No
comparison is made for the cases of fixed-hinged and fixed-fixed because there
appears to be no solution available in the literature. It has been found from
this example that (1) the effect of amplitude is more pronounced for a less
stiff structure, and (2) nonlinear theory shows that the frequency of a column
at the Euler buckling load is not zero for finite amplitudes of vibration.
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CONCLUDING REMARKS

Nonlinear vibration capability for beam and frame structures has been
developed for use with NASTRAN Level 15.5 by means of DMAP ALTERS and modi-
fications to the NASTRAN code. A geometrical stiffness matrix for a bar
element has been developed for NASTRAN by modifying subroutine DBAR. An
equivalent linearization technique and iterative process used to determine
nonlinear frequencies are implemented into NASTRAN by the DMAP ALTERS. The
versatility of the finite-element method enables the analyst to determine
nonlinear frequencies of vibration for non-uniform beam and frame structures.
Comparison with previously published results show that excellent accuracy
is achieved with NASTRAN.
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APPENDIX A

MODIFICATION OF CODE

¥ INSERT +DBARe111
DOUBLE PRECISION PXT+COEFFsHOLD(6) s TEMP(36) +PXP«STOR(36)
*¥INSERT + DBAR 185
Cc
C INSERT NEW NLVIB PARAMETERK INTO olLANK COMMON
C
COMMON ICOMWNLVIB
*¥ INSERT +DBAR«638
[F(NLVIBeNEe«DeANDsFXeEQeDeODV) FX=10D0
* INSERT+DBAR646
*¥ INSERT +DBAR 766
[IF(NLVIBeEQeO) GO TO 621

C
C DIVIDE FX OUT OF KDGG MATRIX
Cc
DO 900 KK=14144
KD (KK )=KD (KK) /F X
90C CONTINUE

COMPUTE
T E*A
PXP = U % —-—— ¥ (KDGG) % U
2%

WHERE U IS A 6X1 VECTOR

KDGG IS A 12X12 MATRIX DIVIDE INTO FOUR 6X6 MATRICES

OO00O00000O0 00

IF(IPVTeNEel) GO TO 621
COEFF=DA¥E/ (2.0D0O*L)
PXT = 00DO
DO 920 IPRP1 = 144
JPx = 1
JCNT=0
IF(IPl1eGE«3) GO TO 930
ILO=1
IHI=72
GO TO 940
930 ILO=73
IHI=144
940 DO 960 I = ILOsIHIs12
JLo=1
JHI=JLO+5
DO 950 K = JLOsJHI
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APPENDIX A

‘ JCNT = JCNT+1
IF(IP1eEQel eOReIP1eEQe3) TEMP(JCNT)=KD(K)

‘ IF(IP1eEQe2e¢0ReIP1eEQed4) TEMP (JCNT)=KD (K+6)
}950 CONT INUE
960 CONTINUE
IWLEFT=37
| IF(IP1eGEe3) IWLEFT=73
‘ IWRGHT =37
IF(IPI.EQ.Z.OQ.IPI.EO.“) I WRGHT =73 A
' CALL GMMATD(KE (IWLEFT) 464641 s TEMP (1) 4646404 3TOR(1))
CALL GMMATD(STOR(1)+6+610+KE (ITWRGHT ) 164640+ TEMP (1))
1912 DO 915 IP2 = 1,36
TEMP (IP2) = TEMP(1P2)*COEFF
'915 CONTINUE
3 IF(IP1 eEQe2e0ReIPleEQe4) UPX = 2

IF(JUPX oEQel) CALL GCGMMATD(HOLD(1)4146s0¢UA(L)sHB3]1 10+PXP)
IF(JUPX oEQe2) CALL GMMATD(HOLD(1)4146e04sUB(L1)e691 20sPXP)

STORE SUM INTO PXT

OO0

PXT = PXT+PXP
920 CONTINUE

C
C PXT=e5 # PXP ¥ KDGG

0O

‘ PXT = PXT¥¢5D0
' 621 CONTINUE
* INSERT +DBAR « 790

IF(NLVIB«sEQeO) GO TO 653

c

C CALCULATE KDGGG AND STORE
C

DO 652 1PX=1,+36
JPX=1PX+108
‘ KEP (JPX ) =PXT*KEP (JPX )
| 652 .CONTINUE
653 CONTINUE
FCOMPILF 4« DBAR
*DELETE + XMPLBD e 78
1e 10+ 4HDSMGegHL e 14109 14 1o -14 14 O
¥DELETE »WT133-L 14439
DIVENSION MPLO1( 48), MPLD2(178)s MPLO3(191)s MPLO4(179)

IF(IPlelLEe2) CALL CMMATD(UA(1)e641 01 e TEMP(1)e6¢6s0+HOLD (1))
IF(IP]1eGEe3) CALL GMMATD(UB(1)e641 s 1 ¢TEMP (1 )e64640eHOLD (1))
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APPENDIX A

#DELETEsWT155~-L 1648
COMMON/XGPI2/LMPL s MPLPNT +MPL (1621)
#DELETEsWT133-L1442,.WT133-L 14445

3
5
7
9

P (MPLLC 227)sMPLO3(1))
s (MPI_( 597)sMPLOS(1))
W« (MPLL( 858)yeMPLO7 (1))
s (MPL (1172)+MPL0O9 (1))

¥DELETEsWT1S95-L 169

1
#COMP I LE + XMPLBD

272

+ (MPL (1538)sMPL11(1))

L}
.
1)

(MPL( 418)MPLO4 (1))
(MPL ( 723)sMPLO6 (1))
(MPL(1067)+MPLOB (1))
(MPL(1351)sMPL1OC(1))
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1D

APP
SOoL
TIME

$
ALTER
GP3
CHKPNT
ALTER
ALTER
EQUIV
CHKPNT
‘ALTER
MCE?2
ICHKPNT
LABEL
EQUIV
'CHKPNT
COND
SCE1
ICHKPNT
LABEL
EQUIV
CHKPNT
(ALTER
SMP2
'CHKPNT
IALTER
ALTER
|SETVAL
SAVE
LABEL
' EQUIV
EQUIV
'READ

[SAVE

' CHKPNT
OFP
SAVE

) COND
SDR1
CHKPNT
EQUIV
ADD

APPENDIX B
DMAP ALTERS

For Nonlinear Analysis

NLVBF «BEAM FRAME

DISP

Se0

5

NONL INEAR FREE VIBRATIONS OF BEAM AND FRAME STRUCTURES
19423

GEOM39sEQEXINsGEOM2/9GPTT/CoN9123/VeNyNOGRAV/CyNs123 $

GPTT %

31031

54

MGG «MNN/MPCF1 %

MNN %

66476

USET sGMaKGGIMGG oo /KNNeMNNyy $
KNNeMNN %

LBL”? %

KNNeKFF/SINGLE /MNNsMFF/SINGLE %
KFFeMFF ¢

LBL3«SINGLE %

USET oKNNOMNN9y o /KFF sKFSsKSSyMFFey &
KFSeKSSeKFFeMFF $

LBL3 &

KFFesKAA/OMIT /MFF+MAA/OMIT &
KAAMAA &

79

USET+GOsMFF/MAA $

MAA %

8le129

134,141
//VeNIsBREAK/CoNe1/VINeLINK/CsNoe=-1 %
BREAKSLINK 3%

CONV %

KAA+KDAA/BREAK $

MAA+MDAA/BREAK %

KAAeMAA Y 9 sEEDIUSETeCASECC/LAMASPHIAWMISZOEIGS/CoNsMODES/V,

NeNEIG/CoeNesZ %

NEIG %

LAMASPHIASMIJOEIGS $

LAMAJOEIGSssee//VsNsCARDNO %

CARDNO

FINISeNEIG &

USET s 9PHIAs99GOIGMe 9 KFSy 9 /PHIGs sB8QG/CoeNs1/CoNIREIG $
PHIG«BQG %

PHIGsPHIAMP/BREAK $

PHIGs/PHIAMP/VsY9sAMP $
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APPENDIX B

CHKPNT PHIAMP &

EQUIV PHIAMPsPHIG/LINK $

pDSuG1l CASECC s oSIL s sPHIGICSTMIMPTIECPTsGPCTsDIT/KGGG/VeNy
DSCOSET/CoeNel $

CHKPNT KGGG %

ADD KGGG+KGG/KDGGG %

CHKPNT KDGGG %

EQUIV KDGGG o KDNN/MPCF2 /MGG sMDNN/MPCF2 &

CHKPNT KDNN+MDONN %

COND LBL2DWMPCF2 %

MCE?Z USET +GMeKDGGGsMGG e 9 /KDNNIMONNy s &

CHKPNT KONNsMDNN %

LABEL LBt.?2D %

EQUIV KDNN«KDFF/SINGLE /MDNNJMDFF/SINGLE %

CHKPNT KOFF +MUFF %

COND LBL3DsSINGLE %

SCE1 USET o KONNeMDNN ¢ o /KDFF o KDFS9 s MDFF 99 +

CHKPNT KDFF eKDFSeMDFF %

LABEL LBL3D %

EQUIV KOFF «KDAA/OMIT /MDFF ¢MDAA/OMIT %

CHKPNT KDAAJMDAA §

COND LBLSDsOMIT %

SMP 1 USEToKDFF 999 /GDOsKDAASKDOOLLDOOs1UDOOs 99 s s

CHKPNT GDO+KDAA &

SMpP2 USET+GDOsMDFF/MDAA §$

CHKPNT MDAA %

LABEL LBLSD %

EQUIV KDAASKAA/LINK $

EQUIV MDAAMAA/L INK %

REPT CONVsel $

ADD MDAAKDAA/KMAA $

ADD PHIAMPs/PHIM %

ALTER 1574158

ENDALTER

CEND
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‘D
PP
0L
"IME
)
;
\WLTER
FQUIV
CHKPNT
\LTER
ACE2
FHKPNT
LABEL
FQUIV
"HKPNT
SOND
5CE1
SHKPNT
-ABEL
TQUIV
CHKPNT
ALTER
SMP2
CHKPNT
ALTER
ALTER
SETVAL
EAVE
ABEL
EQUIV
EQUIV
READ

ALTER -
SDR1
CHKPNT
EQUIV
ADD
CHKPNT
EQUIV
DSMG1

CHKPNT
ADDS
CHKPNT

APPENDIX B

Nonlinear Vibration Analysis With Differential Stiffness

NLVDS+BEAM FRAME
DISP
1340
5
NONLINEAR VIBRATION MODE WITH DIFFERENTIAL STIFFNESS FOR BEAM
AND FRAME STRUCTURES
50
MGG+ MNN/MPCF1 $
MNN 4
6272
USET sGMIKGGIMGGs ¢ /KNNesMNNoy 3
KNNsMNN %
LBLZ %
KNNsKFF/SINGLE /MNNsMFF/SINGLE $
KFFeMFF %
LBL3+SINGLE %
USETsKNNIMNNy o /KFF s KFSoKSSaMFFyy %
KFSsKSSIKFFeMFF $
LBL3 &
KFF+KAA/OMIT /MFFsMAA/OMIT %
KAAMAA $
75
USETsGOsMFF/MAA $
MAA $
1064125
1304130
//VeNsBREAK/CoNs 1/VsNsLINK/CoeNy=1 $
BREAKsLINK $
CONV %
KAAsKSAA/BREAK $
MAA+MSAA/BREAK $
KAAIMAA 99 9 EED Y USET 9 CASECC/LAMAYPHIAGMI 3yOEIGS/CoNoMODES/V
NeNFIGV/CoeNs2
1364137
USET s 9PHIA999GOIGMy 9KFSe 9 /PHIGy93QG/CoeNs1/CoiNeBKLY $
PHIG+BQG &
PHIGsPHIAMP/BREAK %
PHIGs/PHIAMP/VeYsAMP %
PHIAMP $
PHIAMP sPHIG/LINK %
CASECC s sSILe9sPHIGICSTMeMPTIECPTsGPCT+sDIT/KGBGG/VeNy
DSCOSET/CsNel %
KGGG %
KGGeKDGGsKGGGy s /KSGG $
KSGG %
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EQUIV
CHKPNT
COND
MCE?
CHKPNT
LABEL
EQUIV
CHKPNT
COND
SCE1l
CHKPNT
LABEL
EQUIV
CHKPNT
COND
SMP1
CHKPNT
SMP2
CHKPNT
LASEL
EQUIV
EQUIV
REPT
ADD
apd
ENDALTER
CEND

276

APPENDIX B

KSGGsKSNN/MPCF2 / MGGsMSNN/MPCFZ2 %
KSNNsMSNN $

LBL2SsMPCF2 %
USETsGMeKSGGIMGGe s /KSNNeMSNNs s 3
KSNN+MSNN §

LBL?2S &

KSNNeKSFF/SINGLE / MSNNsMSFF/SINGLE $
KSFF +MSFF $

LBL3SsSINGLE %
USEToKSNNeMSNN o s /KSFF oKSFSeeMSFFes
KSFFeKSFSeMSFF &

LBL3S %

KSFFeKSAA/OMIT / MSFF+MSAA/OMIT %
KSAAYMSAA §

LBLSSsOMIT %

USET +sKSFFa99/GSOsKSAAIKSOO9LSO009sUSOO0s 999
GSO+KSAA &

USETsGSOsMSFF/MSAA %

MSAA $

LBLSS %

KSAAKAA/LIWK &

MSAA+MAA/LINK $

CONVsl %

MSAAIKSAA/KMAA $

PHIAMP+/PHIM 3

%
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TABLE 1.

FREQUENCY RATIO OF A HINGED BEAM

Ax1a%xgoad, Method Amplitude Ratio, d = :7§7X

PE 0.0 1.0 2.0 3.0
NASTRAN 1.0000 1.0889 1.3183 1.6260

0.0 Ref. 8 1.0000 1.0892 1.3178 1.6257
Ref. 9 1.0000 1.0897 1.3229 1.6394

NASTRAN .8944 .9928 1.2401 1.5631

0.2 Ref. 8 . 8944 .9930 1.2389 1.5618
Ref. 9 . 8944 .9937 1.2450 1.5772

NASTRAN L7746 .8864 1.1566 1.4976

0.4 Ref. 8 .7746 . 8864 1.1543 1.4949
Ref. 9 .7746 .8874 1.1619 1.5125

NASTRAN .6325 .7653 1.0666 1.4291

0.6 Ref. 8 .6325 . 7649 1.0627 1.4246
Ref. 9 .6325 .7665 1.0724 1.4448

NASTRAN L4472 .6210 .9682 1.3570

0.8 Ref. 8 L4472 .6194 .9617 1.3502
Ref. 9 4472 .6225 L9747 1.3739

NASTRAN .0026 .4309 .8586 1.2810

1.0 Ref. 8 .0000 L4236 .8472 1.2708
Ref. 9 . 0000 .4330 .8660 1.2990

NASTRAN .7329 1.2000

1.2 Ref. 8 .7105 1.1851
Ref. 9 .7416 1.2196




Figure 1.

Bar coordinate system, showing displacements
due to bending in the xz plane.

279



280

Assemble [maa], [kaa], [kdaa]
Solve W 2 [m J{u } = [k 1{u }
o aa’ a aa’ a

'

Compute {ue} for given amplitude |

l

Assemble [kg ]
aa

'

Solve wz m_J{u} =1k +k
aa” a aa aa

+ k8 Hu }
aa’  a

'

Convergence test and Tteration count

Fail

Pass

Figure 2. Simplified flow diagram for nonlinear vibration analysis.
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FREQUENCY RATIO,

Figure 6.
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Variation of frequency with axial load for various

support conditions.




